Monochromatic arithmetic progressions with large differences
نویسندگان
چکیده
منابع مشابه
Monochromatic Arithmetic Progressions With Large Differences
A generalisation of the van der Waerden numbers w(k;r) is considered. For a function f : Z! R + define w(k; f ;r) to be the least positive integer (if it exists) such that for every r-coloring of [1;w( f ;k;r)] there is a monochromatic arithmetic progression fa+ id : 0 i k 1g such that d f (a). Upper and lower bounds are given for w( f ;3;2). For k > 3 or r > 2, particular functions f are given...
متن کاملA probabilistic threshold for monochromatic arithmetic progressions
We show that √ k2k/2 is, roughly, the threshold where, under mild conditions, on one side almost every coloring contains a monochromatic k-term arithmetic progression, while on the other side, there are almost no such colorings.
متن کاملMonochromatic 4-term arithmetic progressions in 2-colorings of Zn
This paper is motivated by a recent result of Wolf [12] on the minimum number of monochromatic 4-term arithmetic progressions (4-APs, for short) in Zp, where p is a prime number. Wolf proved that there is a 2-coloring of Zp with 0.000386% fewer monochromatic 4-APs than random 2-colorings; the proof is probabilistic and non-constructive. In this paper, we present an explicit and simple construct...
متن کاملPrimes in Short Arithmetic Progressions with Rapidly Increasing Differences
Primes are, on average, well distributed in short segments of arithmetic progressions, even if the associated moduli grow rapidly. 1. Statement of results In this paper I establish two results concerning the distribution of prime numbers in short segments of residue classes to widely separated moduli. Let Λ(n) denote von Mangoldt’s function, log p if n is a power of a prime p, zero otherwise. F...
متن کاملPrimes in Arithmetic Progressions to Large Moduli
where <p is Euler's function and n(x) counts all primes up to x. Indeed, (1.1) is known to hold, but only under the proviso that q grow more slowly than some fixed power of logx (Siegel-Walfisz theorem). Yet, for many applications, it is important to weaken this restriction. The assumption of the Generalized Riemann Hypothesis (GRH) yields (1.1) in the much wider range q < X I / 2/ log2+e x . I...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Australian Mathematical Society
سال: 1999
ISSN: 0004-9727,1755-1633
DOI: 10.1017/s0004972700033293